The complex three-dimensional structure and the function of a protein are intimately linked. However, as a consequence of folding inefficiency, environmental stress, genetic mutation, and/or infection, the folded structure of a protein can become altered causing loss of the normal protein function, toxic gain of function, or dominant negative effects. In this module the molecular and biochemical basis of protein folding and misfolding, loss of protein function and the connection of these events to disorders such as the prion diseases, Alzheimer's disease, Parkinson's disease and Retinitis Pigmentosa, will be explored. The proteins involved in all of these disorders, the structural changes taking place, as well as the quality control systems used to cope with protein misfolding, will be covered. Finally, the module will investigate new therapies that are under development to treat protein misfolding and related diseases.
Learning Outcomes
To pass this module students will need to be able to:
1. Understand and explain the key processes involved in protein folding and misfolding, and explain how they are linked to disease, including via the formation of amyloid.
2. Discuss, explain and compare different neurological diseases and the key factors involved in each of their pathologies. Understand and explain the socioeconomic impacts of neurodegenerative diseases in the context of an ageing population.
3. Critically evaluate the therapeutic strategies being developed to address protein misfolding based diseases including future horizons.
- Module Supervisor: Gareth Wright