OVERALL AIM: This course addresses aspects of inorganic and physical chemistry that are fundamental to an understanding of the function of biological systems.
The INORGANIC CHEMISTRY component concentrates firstly on small biochemically pertinent molecules containing the p-block elements oxygen, nitrogen, sulfur & phosphorus. The underlying emphasis is on the importance of electron accountancy in structural representations, which leads to comprehension of the action of redox enzymes in metabolism. Also covered are properties of main-group and transition metal cations, followed by an introduction to their roles in biology.
The PHYSICAL CHEMISTRY component is partly directed towards understanding (bio)chemical kinetics and thermodynamics. Emphasis is on determining reaction mechanisms from experimental kinetic data that inform us on reaction orders, reaction rates (and rate constants) and activation energies, plus assessing to what extent a reaction may proceed based on thermodynamic parameters. Also included is an introduction to several types of spectroscopy, which is centred upon considering the effects of absorption of electromagnetic energy by molecules.
LEARNING OUTCOMES:
To pass this module students will need to be able to:
1. describe the structure, bonding & biochemical importance of small molecules containing the p-block elements O, N, S & P;
2. discuss models for structure & bonding of metal ion complexes;
3. describe fundamental thermodynamics and kinetics and perform associated calculations;
4. explain how the absorption of energy by molecules is used as a basis for understanding spectroscopy;
5. demonstrate basic skills in numerical/data analysis & writing chemical formulae & equations
6. show basic practical skills in analytical and preparative chemistry
- Module Supervisor: Dimitri Svistunenko